Exploring the Roles of LLMs in Transportation Systems: A Framework and Case Study

About me

- □ Tong Nie (聂通)
- Dual PhD student @ The Hong Kong Polytechnic University & Tongji University
 Supervised by Prof. Jian Sun and Dr. Wei Ma
- □ Interests: spatiotemporal learning, urban science, LLMs, autonomous driving
- □ Publication venues: KDD, AAAI, CIKM, TR-C, TR-E, IEEE TITS, etc.
- □ Funded by the National Natural Science Foundation of China (国家自然科学基金)

□ Reach me at: <u>tong.nie@connect.polyu.hk</u>, <u>nietong@tongji.edu.cn</u>.

Homepage: <u>tongnie.github.io</u>

List of Content

Part II: LLM-based Geospatial Representation

LLM-enhanced Demand Estimation

LLM-enhanced Spatiotemporal Prediction

Exploring the Roles of LLMs in Transportation Systems: A Framework and Case Study

- □ Nie, T., Sun, J., & Ma, W. (2025). Exploring the Roles of Large Language Models in Shaping Transportation Systems: A Survey, Framework, and Roadmap. Preprint, arXiv:2503.21411.
- Die, T., He, J., Mei, Y., Qin, G., Li, G., Sun, J., & Ma, W. (2025). Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. Transportation Research Part E: Logistics and Transportation Review, 2025.
- He, J.*, Nie, T. *, & Ma, W. (2024). Geolocation representation from large language models are generic enhancers for spatio-temporal learning, Accepted at the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25).

Growing complexity of cyber-physical-social systems

- Growing complexity and demand of transportation systems
 - Multi-modal, multi-stakeholders
 - ✓ Large-scale, high-dimensional
 - ✓ Persistent challenges
 - Congestion, resilience, sustainability, and adaptability

Multi-modal Transportation Systems in Hong Kong

> AI enabled intelligent transportation systems (ITS)

dynamic environment

Tong Nie, et al.

Growing complexity of cyber-physical-social systems

- Fundamental tasks in transportation systems:
- ✓ Sensing:

Acquisition of traffic data and the environmental perception process.

✓ Learning:

Pattern recognition and predictive analytics.

✓ Modeling:

Formulation and simulation of transportation systems.

✓ Managing:

Optimization and control strategies for the operation of transportation systems.

Growing complexity of cyber-physical-social systems

Emergence of multimodal mobility

✓ CAVs

- ✓ Human-robot interactions
- ✓ Cloud computing ✓ Shared mobility
- ✓ Drone logistics ✓ Smart intersection control

Existing ITS solutions

- ✓ Static models and fragmented data pipelines
- ✓ Customizability and interpretability constraints
- ✓ Task-specific and expertized solutions
- More intelligent tools are needed

EXPLAINABLE AI Artificial Intelligence with AI Explaining Interface

I Rapid evolution of powerful large language models

- Scaling LLMs to solve various real-world tasks
 - ✓ Large Language Models (LLMs): Step-by-step reasoning, in-context learning, instruction following and human-like decision making.
 - From text generators to general-

purpose problem solver:

Programming, planning, generating, imaging, reasoning, ...

Can LLMs help to solve domainspecific transportation problems? How?

• Zhao W X, Zhou K, Li J, et al. A survey of large language models[J]. arXiv preprint arXiv:2303.18223, 2023.

Tong Nie, et al.

Exploring LLMs in Transportation: A Survey and Case Study

Task

□ The roles of LLMs in multimodal transportation systems

Conceptual framework and taxonomy: LLM4TR

Modeling → generating components

$Learning \rightarrow encoding \ knowledge$

Tong Nie, et al.

□ The roles of LLMs in multimodal transportation systems

Conceptual framework and taxonomy: LLM4TR

• Nie, T., Sun, J., & Ma, W. (2025). Exploring the Roles of Large Language Models in Shaping Transportation Systems: A Survey, Framework, and Roadmap. arXiv:2503.21411.

Tong Nie, et al.

Exploring LLMs in Transportation: A Survey and Case Study

10

LLMs as Information Processors

Definition: LLMs process and fuse heterogeneous traffic data from multiple sources through contextual encoding, analytical reasoning, and multimodal integration.

Example: Using LLMs to analyze sensory traffic data (Zhang et al., 2024d), accident reports (Mumtarin et al., 2023) and convert user language queries to task-specific commands (Liao et al., 2024).

✓ Context encoder

• Translating textual descriptions of traffic information or task queries into structured encodings.

✓ Data analyzer

• Generalized analyzer for multimodal traffic data, such as reports, images, videos, and time series.

✓ Multimodal fuser

• MLLMs can convert heterogeneous types of data into aligned feature vectors or unified processing.

LLMs as Information Processors

✓ Context encoder

ChatScene (Zhang et al., 2024b)

- Traffic simulation (modeling)
- Traffic scenario description → runnable code

✓ Data analyzer

TrafficGPT (Zhang et al., 2024d)

- Traffic management (managing)
- Heterogeneous traffic data → actionable insights

✓ Multimodal fuser

SeeUnsafe (Zhang et al., 2025)

- Safety analytics (learning)
- Using MLLMs to automate video-based accident analysis

LLMs as Knowledge Encoders

Definition: LLMs extract and formalize traffic domain knowledge from unstructured data through explicit rule extraction and implicit semantic embedding.

Example: Building a knowledge base of traffic rules (Wang et al., 2024e), formalizing scenarios as knowledge graphs (Kuang et al., 2024) and generating computable vectors for subsequent tasks (He et al., 2024).

✓ Knowledge extractor

• Explicitly distill unstructured data into formalized knowledge representations such as text and knowledge graphs.

✓ Knowledge representation embedder

• LLMs encode transportation semantics into dense latent spaces that capture implicit relationships between entities.

LLMs as Knowledge Encoders

✓ Knowledge extractor

Kuang et al. (2024)

- Scene understanding (sensing)
- Generating visual traffic knowledge graphs from scene image using VLMs

✓ Knowledge representation embedder

LLM2Geovec (He & Nie et al., 2024)

- Traffic prediction (learning)
- Knowledge from the Internet → location-specific vectors

LLMs as Component Generators

Definition: LLMs create functional algorithms, synthetic environments, and evaluation frameworks through instruction-followed content generation.

Example: Designing reward functions in reinforcement learning (Yu et al., 2024), synthesizing virtual driving environments (Zhao et al., 2024), and providing feedback for model refinement (Tian et al., 2024).

✓ Function designer

• Designing or refinement of code- or rulebased functions for traffic management.

✓ World simulator

• Simulating the environmental dynamics of real-world scenarios (generalized simulators).

✓ Data synthesizer

• Generative synthesis of system parameters and data engineering.

✓ Evaluator and interpreter

• Bringing human-like reasoning to system evaluation and decision self-refinement.

LLMs as Component Generators

✓ Function designer

Yu et al. (2024)

Reward design for RL agent in traffic control

World simulator

Drive Dreamer-2 (Zhao et al., 2024)

World models for highfidelity driving simulation

Data synthesizer \checkmark

LLMScenario (Chang et al., 2024) Generating parameters for safetycritical scenarios

Evaluator and interpreter \checkmark

iLLM-TSC (Pang et al., 2024a)

Adjusting actions through feedbacks to align with real-world constraints

LLMs as Decision Facilitators

Definition: LLMs predict traffic dynamics, optimize decisions, and simulate human-like reasoning, establishing new paradigms as generalized task solvers.

Example: Making control and planning decisions for autonomous driving (Sima et al., 2024), guiding safety-critical actions (Wang et al., 2023a), and forecasting traffic states (Ren et al., 2024).

Decision maker

• Making direct decision or predicting actions by task planning and in-context learning abilities.

✓ Decision guider

• Guiding or optimizing the decisions by generating action candidates or language instructions.

✓ Spatial-temporal predictor

• Forecasting spatial-temporal dynamics of traffic systems at both macro and micro scales.

LLMs as Decision Facilitators

Decision maker Human questions "What is the current action of the vehicle?" "Why does the vehicle behave in this way? Visual Encoder 📲 Text Tokenizer Stage 1: Large Language Model Stage 2: M DriveGPT4 Text De-Tokenize **DriveGPT4** answers: Predicted control signals: "The vehicle is driving a_t , i.e., speed and turning angle forward." "Because the road is clear with no obstacles forward." DriveGPT4 (Xu et al., 2024)

- Autonomous driving (managing)
- VLMs process videos and textual, directly predicting lowlevel control signals.

Decision guider

AccidentGPT (Wang et al., 2023a)

- Accident prevention (managing)
- Safety advisor to issue longrange warnings and humanunderstandable guidance.

Spatial-temporal predictor

ST-LLM (Liu et al., 2024b)

- Traffic prediction (learning)
- As backbone forecasters for traffic flow, with spatial-temporal tokenization

□ The roles of LLMs in multimodal transportation systems

Research trend and future opportunities

Research Trend Heatmap

Proportion of Roles in Different Tasks

• Nie, T., Sun, J., & Ma, W. (2025). Exploring the Roles of Large Language Models in Shaping Transportation Systems: A Survey, Framework, and Roadmap. arXiv:2503.21411.

Tong Nie, et al.

Exploring the Roles of LLMs in Transportation Systems: A Framework and Case Study

- □ Nie, T., Sun, J., & Ma, W. (2025). Exploring the Roles of Large Language Models in Shaping Transportation Systems: A Survey, Framework, and Roadmap. Preprint, arXiv:2503.21411.
- Nie, T., He, J., Mei, Y., Qin, G., Li, G., Sun, J., & Ma, W. (2025). Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. Transportation Research Part E: Logistics and Transportation Review, 2025.
- He, J.*, Nie, T. *, & Ma, W. (2024). Geolocation representation from large language models are generic enhancers for spatio-temporal learning, Accepted at the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25).

Unlocking the power of large language models in predictive learning

- LLMs as **black-box** agents (using API)
 - ✓ Understand environments
 - Perception
 - □ Memorization
 - ✓ Analyse unstructured data
 - □ Text, Code
 - □ Image, Video
 - \checkmark Use external tools to take actions
 - □ Simulator
 - □ Optimizer
 - Web Search
 - □ Programme
 - Most literature: input-output

- Intrinsic mechanisms of LLMs are unexplored
- ✓ Trained on the whole Internet with human languages → common sense and world knowledge
- ✓ Rich information \rightarrow LLM as a knowledge base

Unlocking the power of large language models in predictive learning

LLMs can represent space and time (understand the world)

- ✓ Whether LLMs just learn an enormous collection of superficial statistics or an inherent model of the data generating process -- a world model?
- ✓ LLMs learn <u>linear representations</u> of space and time across multiple scales
- ✓ How can we extract such representations from LLMs and facilitate location-based modeling?

• Gurnee W, Tegmark M. Language models represent space and time[J]. arXiv preprint arXiv:2310.02207, 2023.

Tong Nie, et al.Exploring LLMs in Transportation: A Survey and Case Study

LLM2Geovec: converting world knowledge to computable vectors

- Eliciting geospatial knowledge from LLMs
 - ✓ Location-based encoding enhances

spatiotemporal tasks, e.g., demand estimation

- ✓ Obtaining globally covered representations with readily accessible data is challenging
- ✓ LLMs have demonstrated extensive world and human-related knowledge

LLM-based geospatial representations as generalized location encodings

- > Representation: object \rightarrow numeric vector
- ✓ Word2Vec:

LLM2Geovec: converting world knowledge to computable vectors

- Stage 1: generating geolocation prompts for coordinates from open map data
- Stage 2: generating representations for text descriptions from pre-trained LLMs
- Stage 3: employing representations in various downstream tasks

Tong Nie, et al.

LLM2Geovec: converting world knowledge to vectors

- Stage 1: generating geolocation prompts for coordinates from map data
- Stage 2: generating embeddings for text descriptions from pre-trained LLMs (training-free)
- Stage 3: employing refined embeddings in various downstream tasks
 - a. Constructing geospatial prompt from open map data b. Encoding geolocation knowledge via LLMs c. Integrating with expert

• Nie T, et al. Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. TRE, 2025.

□ Application 1: Traffic demand estimation and prediction

- > Joint estimation and prediction of delivery demand in **new regions (w/o historical data)**
- Transferring the model from an active city to new cities (zero-shot)
- Modeling as a graph-based learning problem: region-specific and region-wide patterns.

• Nie T, et al. Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. TRE, 2025.

Tong Nie, et al.

□ Application 1: Traffic demand estimation and prediction

- ➤ Location-specific covariates → in-sample accuracy
- ➤ Cross-location covariates → out-of-sample transferability
- LLM2Geovec can facilitate the modeling process

Integrating LLM2Geovec into spatiotemporal demand predictor (graph neural networks)

Individual patterns: LLM2Geovec as fixed region embeddings

$$p_{\boldsymbol{\theta}_i}^i(\boldsymbol{x}_{t+h}^i|\boldsymbol{X}_{t-W:t}^i, \boldsymbol{U}_{t-W:t+h}, \boldsymbol{v}^i) \approx p^i(\boldsymbol{x}_{t+h}^i|\boldsymbol{\mathcal{X}}_{< t}, \boldsymbol{U}_{\le t+h}, \boldsymbol{V}), \ \forall h \in [1, H], \ \forall i \in \{1, \dots, \bar{N}\},$$

$$\boldsymbol{h}_{t}^{i,(\ell+1)} = \psi^{(\ell)} \left(\boldsymbol{h}_{t}^{i,(\ell)}, \operatorname{AGGR}_{j \in \mathcal{N}_{k}(i)} \{ \rho^{(\ell)} ([\boldsymbol{h}_{t}^{i,(\ell)} | \widetilde{\boldsymbol{v}}_{\phi_{i}}], \boldsymbol{h}_{t}^{j,(\ell)}, e^{i \leftarrow j}) \} \right)_{\ell=0}^{L-1},$$

Collective patterns: functional graph construction with LLM2Geovec

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t+h}^{i} | \bar{\mathcal{G}}_{t-W:t}, \boldsymbol{U}_{t-W:t+h}) \approx p(\mathcal{X}_{t+h} | \mathcal{X}_{< t}, \boldsymbol{U}_{\le t+h}, \boldsymbol{V}), \ \forall h \in [1, H], \ \forall i \in \{1, \dots, \bar{N}\},$$
$$\bar{\mathcal{X}}_{t-W:t}^{u}, \hat{\mathcal{X}}_{t:t+H} = \mathcal{F}(\overline{\mathcal{G}}_{t-W:t}, \boldsymbol{U}_{t-W:t+H}, \boldsymbol{A}_{\text{LLM}} \boldsymbol{\theta}), \ \boldsymbol{A}_{\text{LLM}} \sim q_{\Phi}(\bar{\boldsymbol{A}} | \bar{\mathcal{X}}_{t-W:t}) \in \mathbb{R}^{\bar{N} \times \bar{N}},$$

• Nie T, et al. Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. TRE, 2025.

□ Application 1: Traffic demand estimation and prediction

- Parameterization by graph neural networks
- Collective-individual pattern treatment considering transferability
- End-to-end transferable predictor by inductive learning

Inductive training scheme

 $\begin{aligned} & \text{Sampling: } \boldsymbol{m}_{t-W:t}^{i} \sim p(\boldsymbol{m}_{t-W:t}^{i}) = \mathcal{B}(\beta), \forall i \in \{1, \dots, N_{o}\}, \\ & \text{Masking: } \bar{\mathcal{X}}_{t-W:t} = \{\boldsymbol{m}_{t-W:t}^{i} \odot \boldsymbol{X}_{t-W:t}^{i}\}_{i=1}^{N_{o}}, \\ & \text{Reconstructing: } \hat{\mathcal{X}}_{t:t+H} = \mathcal{F}(\bar{\mathcal{X}}_{t-W:t}, \{\boldsymbol{A}_{\tau}\}_{t-W}^{t} | \boldsymbol{\theta}) \approx \mathbb{E}_{p}[p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t+h}^{i} | \bar{\mathcal{X}}_{t-W:t})], \forall h \in [1, H] \\ & \text{Learning: } \boldsymbol{\theta}^{\star} = \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\text{recon}}(\hat{\mathcal{X}}_{t-W:t}, \mathcal{X}_{t-W:t}) + \mathcal{L}_{\text{pred}}(\hat{\mathcal{X}}_{t:t+H}, \mathcal{X}_{t:t+H}) \\ & = \arg\min_{\boldsymbol{\theta}} \underbrace{\sum_{\tau=t-W}^{t} \frac{\sum_{i=1}^{N_{o}} \overline{m}_{\tau}^{i} \cdot \ell(\hat{\boldsymbol{x}}_{\tau}^{i}, \boldsymbol{x}_{\tau}^{i})}{\sum_{i=1}^{N_{o}} \overline{m}_{\tau}^{i}}_{\text{reconstruction loss}} + \underbrace{\frac{1}{\bar{N}H} \sum_{h=1}^{H} \sum_{i=1}^{\bar{N}} \ell(\hat{\boldsymbol{x}}_{t+h}^{i}, \boldsymbol{x}_{t+h}^{i})}_{\text{prediction loss}} \\ \\ & \overline{\text{Estimating: } \hat{\mathcal{X}}_{t:t+H'} = \mathcal{F}(\bar{\mathcal{X}}_{t-W':t}, \{\bar{\boldsymbol{A}}_{\tau}\}_{t-W'}^{t} | \boldsymbol{\theta}^{\star}), \ \bar{\mathcal{X}}_{t-W':t} = \{\boldsymbol{X}_{t-W':t}^{i}\}_{i=1}^{N_{o}} \cup \{\bar{\boldsymbol{X}}_{t-W':t}^{i}\}_{i=1}^{N_{u}} \\ \end{aligned}$

Spatial-temporal message passing neural networks

- ✓ Temporal message-passing layers (TEMPENC) $h_t^{i,\ell+1} = \sigma(W_t^{\ell}[x_t^{i,\ell} || x_{t-1}^{j,\ell} || \dots || x_{t-W}^{j,\ell}] + b_t^{\ell}).$
- ✓ Spatial message-passing layers Message Updating: $m_t^{j \to i,\ell} = \sigma(W_m^{\ell}[h_t^{i,\ell} || h_t^{j,\ell} || e_t^{i \leftarrow j}] + b_m^{\ell}),$ Edge Updating: $\alpha_t^{j \to i,\ell} = \sigma(W_e^{\ell} m_t^{j \to i,\ell} + b_e^{\ell}),$ Node Updating: $h_t^{i,\ell+1} = \sigma(W_n^{\ell} h_t^{i,\ell} + \text{MEAN}_{j \in \mathcal{N}_k(i)} \{\alpha_t^{j \to i,\ell} m_t^{j \to i,\ell}\})$
- ✓ Dense Feedforward Layer

 $\boldsymbol{h}_t^{i,\ell+1} = \sigma(\boldsymbol{W}_r^\ell \boldsymbol{h}_t^{i,\ell} + \boldsymbol{b}_r^\ell) + \boldsymbol{h}_t^{i,\ell}.$

✓ MLP-based Multistep Output Layer $\hat{x}_{t+h}^i = MLP(h_t^{i,(L)}, U_{t:t+h}, v_{\phi_i}), \forall i \in \{1, ..., \bar{N}\}.$

• Nie T, et al. Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. TRE, 2025.

□ Application 1: Traffic demand estimation and prediction

- Accuracy: outperforms SOTA baselines in all scenarios by large margins
- Transferability: flexible to generalize to new cities in zero-shot ways
- **Robustness**: more robust performance in online scenarios

Models	Sha	nghai	Han	gzhou	Chon	gqing	Ji	lin	Ya	ntai
a Sine	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
на а. Энц	P 6.96	16.41	9 8.94	20.56	Pa	8.85	2.27	4.85	3.82	8.42
DCRNN <u>(Li et al., 2017)</u>	5.65	11.86	7.33	14.59	3.53	6.15	2.05	3.37	3.21	6.17
STGCN (Yu et al., 2017)	5.07	11.62	6.38	14.26	2.99	6.00	1.53	2.84	2.80	5.79
GWNET (Wu et al., 2019b)	5.22	11.67	7.99	15.90	3.06	6.03	1.64	3.06	2.93	6.01
MTGNN <u>(Wu et al., 2020)</u>	5.09	11.56	<u>6.23</u>	<u>13.89</u>	<u>2.97</u>	5.91	<u>1.52</u>	<u>2.84</u>	<u>2.73</u>	5.70
IGNNK (Wu et al., 2021b)	5.22	11.50	7.25	15.06	3.22	6.06	2.22	3.71	2.97	5.93
SATCN (Wu et al., 2021c)	<u>4.75</u>	<u>9.38</u>	7.64	14.77	3.04	<u>5.27</u>	1.58	<u>2.84</u>	2.83	<u>5.02</u>
MPGRU (Gao and Ribeiro, 2022)	6.30	13.43	7.95	16.03	3.91	7.60	1.94	3.61	3.58	7.45
GRIN (Cini et al., 2021)	5.08	11.64	6.30	14.56	3.05	6.08	1.54	2.90	2.86	6.02
IMPEL (Ours)	3.76	7.93	4.52	9.90	2.47	4.92	1.39	2.51	2.23	4.18
Improvement (%)	20.8	15.4	27.4	28.7	16.8	6.64	8.55	11.6	18.3	16.7

Models	IMPEI	. (Ours)	MT	GNN	IGN	INK	STC	GCN	GI	RIN
Source \mapsto Target	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
Shanghai → Hangzhou	3.35	6.42	4.07	<u>7.32</u>	5.64	aDI 9.00	5.55	9.31	3.75	7.33
Shanghai \mapsto Chongqing	2.26	4.44	2.62	4.89	3.25	5.22	2.91	4.91	2.51	4.86
Shanghai \mapsto Yantai	2.21	4.14	2.52	4.68	3.47	5.66	2.79	4.77	2.56	4.87
Hangzhou → Shanghai	2.90	6.20	3.12	6.38	3.04	6.26	3.09	6.54	3.11	6.53
Hangzhou → Chongqing	2.10	4.25	2.21	4.37	2.21	4.32	2.17	4.37	2.20	4.47
Hangzhou → Yantai	2.13	4.08	2.26	4.33	2.23	4.17	2.21	4.28	2.34	4.69

Demand Prediction Result of Region #11, Shangha

Demand Prediction Result of Region #0. Shangha

• Nie T, et al. Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. TRE, 2025.

Location-based spatiotemporal process in urban and earth systems

- From a big picture: urban systems
 - ✓ Spatial-temporal complex systems
 - ✓ Location-based process:

Human mobility, social media, geographic, demographic, economic, environmental factors

 ✓ Call for generalizable, costeffective, and equitable methods for urban computing

• Zou X, Yan Y, Hao X, et al. Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlook[J]. Information Fusion, 2025.

4 LLM-enhanced spatiotemporal and geographic Prediction

D Application 2: Spatio-temporal learning on the earth

Spatiotemporal learning, which consists of spatially-referenced time series, such as air pollution monitoring, disease tracking, and cloud-demand forecasting

Our aim:

- ✓ To leverage LLMs to generate semantically rich and globally covered geolocation representations with readily accessible data.
- ✓ To offer a simple yet effective paradigm for enhancing spatio-temporal learning using LLMs, resulting in direct performance improvements.

• He, J.*, Nie, T. *, & Ma, W. (2024). Geolocation representation from large language models are generic enhancers for spatio-temporal learning, AAAI-25

4 LLM-enhanced spatiotemporal and geographic Prediction

D Application 2: Spatio-temporal learning on the earth

Geographic prediction:

- ✓ Given ground observations (e.g., crime rate, income level, temperature) of partial locations
- \checkmark Trained to predict values of unlabeled locations

≻ How to Enhance :

- ✓ LLM2Geovec acts as input features of locations
- ✓ Using simple **linear model** (ridge regressor)
- ✓ Integrating LLM2Geovec with **existing architectures**

Tasks	Source	Scale	Attribute	Training/ Testing
Annual Air Temperature	Chelsa	Global	Climate	80k/20k
Annual Precipitation	Chelsa	Global	Climate	80k/20k
Monthly Climate Moisture	Chelsa	Global	Climate	40k/20k
Population Density	WorldPop	Global	Society	80k/20k
Nighttime Light Intensity	EOG	Global	Society	80k/20k
Human Modification Terrestrial	SEDAC	Global	Society	80k/20k
Global Gridded Relative Deprivation	SEDAC	Global	Society	80k/20k
Ratio of Built-up Area to Non-built Up Area	SEDAC	Global	Society	80k/20k
Child Dependency Ratio	SEDAC	Global	Society	80k/20k
Subnational Human Development	SEDAC	Global	Society	80k/20k
Infant Mortality Rates	SEDAC	Global	Society	80k/20k
Asset Index	DHS	Global	Society	20k/5k
Sanitation Index	DHS	Global	Society	20k/5k
Women BMI	DHS	Global	Society	40k/10k
Poverty Rate	DHS	Country	Society	5k/1k
Population Density	FaceBook	Country	Society	5k/1k
Women BMI	DHS	Country	Society	5k/1k
Population Density	NYC	City	Society	1k/424
Education Level	NYC	City	Society	1k/424
Income Level	NYC	City	Society	1k/424
Crime Rate	NYC	City	Society	1k/424

Tasks	LLMGeo	ovec (LLaN	4a 3 8B)	LLMGeo	ovec (Mistr	al 8 x 7B)	Bert-whi	tening (Be	rt base)	G	TE-large		GTE	e-qwen2 71	В
	MAE	RMSE	R ²	MAE	RMSE	R ²	MAE	RMSE	\mathbb{R}^2	MAE	RMSE	\mathbb{R}^2	MAE	RMSE	\mathbb{R}^2
Annual Air Temperature	9.90	14.32	0.95	11.05	16.03	0.94	24.03	32.73	0.76	22.23	30.15	0.80	14.05	19.99	0.91
Annual Precipitation	2016.60	3021.76	0.86	2176.82	3245.12	0.83	3717.73	5293.82	0.56	3519.57	5012.55	0.61	2604.86	3931.23	0.76
Monthly Climate Moisture	1302.14	2021.21	0.55	1345.82	2097.32	0.52	1644.56	2715.44	0.19	1619.65	2610.16	0.25	1394.10	2288.89	0.43
Population Density	695.10	1020.11	0.85	759.81	1115.38	0.82	1342.98	2185.67	0.30	1266.82	1986.15	0.42	896.52	1417.02	0.70
Nighttime Light Intensity	3.55	4.58	0.97	3.79	4.89	0.96	8.55	11.37	0.81	7.63	9.99	0.85	4.77	6.15	0.94
Human Modification Terrestrial	0.07	0.09	0.78	0.07	0.09	0.75	0.12	0.15	0.39	0.11	0.14	0.47	0.08	0.11	0.68
Global Gridded Relative Deprivation	6.56	8.98	0.85	6.70	9.15	0.84	10.43	13.60	0.65	9.83	12.95	0.68	8.13	10.86	0.78
Ratio of Built-up Area to Non-built Up Area	8.44	11.07	0.78	8.72	11.41	0.77	13.04	16.40	0.52	12.51	15.81	0.56	10.48	13.41	0.68
Child Dependency Ratio	5.84	8.29	0.86	5.88	8.34	0.88	9.50	13.12	0.64	9.11	12.47	0.68	7.17	10.09	0.79
Subnational Human Development	5.79	8.20	0.89	5.82	8.22	0.89	9.81	13.30	0.70	9.15	12.36	0.75	7.10	9.95	0.83
Infant Mortality Rates	3.98	6.06	0.93	4.02	6.14	0.93	7.42	10.76	0.77	7.24	10.20	0.80	4.97	7.50	0.89
Asset Index	0.02	0.03	0.93	0.02	0.03	0.92	0.06	0.08	0.53	0.05	0.07	0.62	0.04	0.06	0.78
Sanitation Index	0.09	0.12	0.95	0.10	0.13	0.93	0.23	0.30	0.67	0.20	0.26	0.75	0.15	0.20	0.85
Women BMI	0.76	1.01	0.95	0.83	1.12	0.94	1.82	2.38	0.77	1.55	2.04	0.83	1.16	1.57	0.90

• He, J.*, Nie, T. *, & Ma, W. (2024). Geolocation representation from large language models are generic enhancers for spatio-temporal learning, AAAI-25

4 LLM-enhanced spatiotemporal and geographic Prediction

D Application 2: Spatio-temporal learning on the earth

- Graph-based Time Series Forecasting:
 - ✓ Given historical time-series data and the graph relational bias of locations
 - ✓ Predict long-term or short-term future dynamics of sensors
- ➢ How to Enhance :
 - ✓ LLM2Geovec acts as **additional covariates** of locations,

concatenated on the historical signal embedding before models

Long-term forecasting results

					<u> </u>					<u> </u>							
Models	iTranst	former	w/ LLM	[Geovec	TSM	lixer	w/ LLM	Geovec	RM	LP	w/ LLM	Geovec	Info	rmer	w/ LLM	[Geovec	IMP
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	%
Global Wind	4.582	1.51	<u>3.979</u>	<u>1.380</u>	4.261	1.424	4.132	1.407	4.905	1.498	4.180	1.414	4.905	1.576	4.844	1.566	13.30%
Global Temp	13.079	2.653	11.945	2.601	12.035	2.480	<u>11.441</u>	<u>2.398</u>	13.447	2.558	12.525	2.480	18.370	3.209	18.639	3.234	5.19%
Solar Energy	0.233	0.262	<u>0.206</u>	0.265	0.255	0.294	0.219	0.289	0.261	0.313	0.235	0.286	0.264	0.308	0.263	0.313	11.59%
Demand-SH	0.331	0.298	0.322	0.297	0.355	0.332	0.336	0.305	0.345	0.326	<u>0.318</u>	<u>0.286</u>	0.896	0.618	0.779	0.666	2.47%
Air Quality	1.922	0.631	1.856	0.619	2.068	0.665	1.989	0.650	1.857	0.627	<u>1.820</u>	<u>0.613</u>	3.584	0.864	2.858	0.771	3.46%
Traffic-SD	0.136	0.225	0.106	0.201	0.116	0.212	<u>0.105</u>	<u>0.197</u>	0.205	0.296	0.168	0.264	0.199	0.298	0.152	0.254	22.01%

Image source: Cini et al. 2023, by authors

Short-term forecasting results

					<u> </u>		
Models	8	SD	G	LA	G	IMP	
	MAE	RMSE	MAE	RMSE	MAE	RMSE	(%)
НА	60.78	87.39	59.58	86.19	56.43	79.81	-
DCRNN +LLMGeovec	25.23 18.70	39.17 31.36	22.73 21.43	35.65 34.76	22.35 21.69	35.26 34.37	8.32%
STGCN +LLMGeovec	20.10 19.83	34.60 33.21	22.48 22.03	38.55 37.45	23.14 22.43	37.90 36.51	3.51%
ASTGCN +LLMGeovec	25.13 23.89	39.88 38.08	28.44 23.74	44.13 38.27	26.15 23.24	40.25 37.78	7.98%
AGCRN +LLMGeovec	18.45 18.21	34.40 33.82	20.61	36.23 35.96	20.55	<u>33.91</u> 34.12	0.60%
GWNET +LLMGeovec	19.38 18.03	31.88 30.06	21.23 20.29	33.68 <u>32.62</u>	20.84 20.66	34.58 33.58	3.92%
MTGNN +LLMGeovec	23.69 19.03	36.83 31.17	23.47 21.76	37.68 34.58	23.73 22.55	36.01 35.77	8.09%
MLP +LLMGeovec	27.84 19.00	43.92 <u>3.03</u>	29.12 21.07	45.76 34.56	29.15 21.42	45.64 34.92	26.53%

• He, J.*, Nie, T. *, & Ma, W. (2024). Geolocation representation from large language models are generic enhancers for spatio-temporal learning, AAAI-25

Harnessing LLM-based Geospatial Representations for Spatiotemporal Learning

- LLMs are surprisingly geospatially aware;
- > LLM2Geovec offers linear, interpretable representations of Earth data;
- Integrating these vectors into existing models—whether GNNs or MLPs—is computationally efficient and boosts performance;
- LLM2Geovec brings little additional computational time and memory overhead, making advanced tools accessible even with limited data.

Tong Nie, et al.

5 ITSC 2025 Invited Session Calls for Papers

IEEE ITSC 2025

Welcome to submit your paper!

Submission Deadline: May 1st, 2025

Invited session: Innovative Applications of Large Language Models in Multimodal Transportation Systems

Topics of interest (not limited to):

EEE CODE:p25rt

- **LLM-enhanced sensing:** Integrating LLMs or VLMs for multimodal traffic data acquisition, fusion, translation, and analysis.
- **Knowledge-driven learning**: Prompt engineering, domain-specific LLM finetuning, few-shot learning, RAG, and knowledge representation in predictive learning tasks such as traffic prediction, travel forecasting, and behavior modeling.
- **Generative modeling in ITS**: Use LLMs to generate synthetic traffic scenarios, assist in the development of digital twins and simulation systems, design heuristic algorithms and functions, and provide feedback and evaluation.
- **Intelligent decision making**: LLM-based traffic control, network optimization, mixed traffic flows, intelligent vehicles, human-in-the-loop interfaces, agent frameworks for complex tasks, and collaborative multi-agent coordination.
- **LLMs in transport operation and management:** Applying LLMs in real-time traffic management, safety analytics, public transit, shared mobility, multimodal integration, Mobility as a Service (MaaS) platform.
- **Innovative case studies**: Presentation of pioneering deployment where LLMs have been successfully integrated into real-world multimodal transportation systems.
- **Ethical and operational considerations**: Discussions on the challenges and implications of deploying LLMs, including data privacy, interpretability, bias mitigation, scalability, and computational efficiency.

Tong Nie, et al.

Papers @ arXiv

More about us

Tong Nie

Ph.D. Candidate

Department of Civil and Environmental Engineering

The Hong Kong Polytechnic University

Homepage: tongnie.github.io

